Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Ai-Qing Ma, Long-Guan Zhu* and Guo-Qiang Cai

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.027$
$w R$ factor $=0.070$
Data-to-parameter ratio $=11.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

# Poly[[aqua(1,10-phenanthroline)lead(II)]-$\mu_{3}$-3-sulfonatobenzoato] 

In the title compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, each $\mathrm{Pb}^{\mathrm{II}}$ atom is coordinated by five O atoms from one water molecule and three 3 -sulfonatobenzoate ligands and two N atoms from one 1,10-phenanthroline. The 3 -sulfonatobenzoate ligand serves as a $\mu_{3}$-bridge, linking three $\mathrm{Pb}^{\mathrm{II}}$ atoms, and extends the structure into a one-dimensional ladder. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate a twodimensional layer and enhance the stability of the structure.

## Comment

The structure of the 4 -sulfonatobenzoate-lead(II) compound with 1,10-phenanthroline (phen) is a two-dimensional layer (Zhang et al., 2005); however, in the case of 2 -sulfonatobenzoate, the structure of the lead(II) compound is a dimer (Li \& Yang, 2004). As part of a systematic investigation on sulfobenzoate lead(II) compounds, we present here the 3 -sulfonatobenzoate-lead(II) compound, (I).


Received 3 October 2005 Accepted 7 October 2005 Online 12 October 2005


Figure 1
View of a segment of (I). Displacement ellipsoids are drawn at the $40 \%$ probability level. [Symmetry codes: (i) $-x, 1-y,-z$; (ii) $x,-1+y, z$.]
$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds give rise to a two-dimensional layer (Table 2), enhancing the stability of the structure.

## Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.076 \mathrm{~g}, 0.23 \mathrm{mmol})$, sodium hydrogen 3sulfobenzoate $(0.046 \mathrm{~g}, \quad 0.21 \mathrm{mmol}), 1,10$-phenanthroline monohydrate $(0.041 \mathrm{~g}, 0.21 \mathrm{mmol})$ and water $(10 \mathrm{ml})$ was heated at 423 K for 54 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling to room temperature, pale-yellow plate-shaped crystals of (I) were obtained.

## Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=605.57$
Triclinic, $P \overline{1}$
$a=6.8033$ (6) $\AA$
$b=11.1687$ (10) $\AA$
$c=12.6787$ (11) $\AA$
$\alpha=99.684(1)^{\circ}$
$\beta=98.109(1)^{\circ}$
$\gamma=102.614(1)^{\circ}$
$V=910.76(14) \AA^{3}$

## Data collection

Bruker APEX area-detector
$\quad$ diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2002)
$\quad T_{\min }=0.273, T_{\max }=0.361$
6518 measured reflections

## $Z=2$

$D_{x}=2.208 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5025 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=9.42 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.16 \times 0.12 \times 0.11 \mathrm{~mm}$

> 3148 independent reflections 2993 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=25.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-13 \rightarrow 12$
> $l=-15 \rightarrow 14$


Figure 2
View of the ladder-like chain in (I). H atoms have been omitted for clarity.

## Refinement

Refinement on $F^{2}$
H atoms treated by a mixture of
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$ independent and constrained
$w R\left(F^{2}\right)=0.070$
$S=1.14$ refinement
$S=1.14$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0409 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.97 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| $\mathrm{Pb} 1-\mathrm{O} 1$ | $2.565(4)$ | $\mathrm{Pb} 1-\mathrm{N} 1$ | $2.505(4)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Pb} 1-\mathrm{O} 2$ | $2.589(4)$ | $\mathrm{Pb} 1-\mathrm{N} 2$ | $2.539(4)$ |
| $\mathrm{Pb} 1-\mathrm{O} 3^{\mathrm{i}}$ | $3.036(4)$ | $\mathrm{S} 1-\mathrm{O} 3$ | $1.461(4)$ |
| $\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{ii}}$ | $2.683(4)$ | $\mathrm{S} 1-\mathrm{O} 4$ | $1.466(4)$ |
| $\mathrm{Pb} 1-\mathrm{O} 6$ | $2.641(4)$ | $\mathrm{S} 1-\mathrm{O} 5$ | $1.444(4)$ |
|  |  |  |  |
| $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$ | $65.43(14)$ | $\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{ii}}$ | $145.32(13)$ |
| $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 1$ | $97.97(15)$ | $\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{ii}}$ | $150.62(13)$ |
| $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 1$ | $75.17(14)$ | $\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O}^{\mathrm{ii}}$ | $78.71(15)$ |
| $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 2$ | $74.54(15)$ | $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$ | $166.16(13)$ |
| $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 2$ | $104.63(15)$ | $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$ | $100.75(13)$ |
| $\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 2$ | $50.25(13)$ | $\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$ | $78.26(14)$ |
| $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 6$ | $79.96(14)$ | $\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$ | $111.53(12)$ |
| $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 6$ | $138.16(15)$ | $\mathrm{O} 6-\mathrm{Pb} 1-\mathrm{O} 3^{\mathrm{i}}$ | $112.21(13)$ |
| $\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 6$ | $135.03(15)$ | $\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Pb} 1-\mathrm{O} 3^{\mathrm{i}}$ | $97.66(12)$ |
| $\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 6$ | $86.97(15)$ | $\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 3$ | $113.8(3)$ |
| $\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{ii}}$ | $77.75(14)$ | $\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 4$ | $113.5(3)$ |
| $\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 44^{\mathrm{ii}}$ | $71.81(13)$ | $\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$ | $110.9(3)$ |

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $x, y-1, z$.

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| ${\text { O6-H6 } 6 B \cdots \mathrm{O}^{\text {iii }}}^{\text {iv }}$ | $0.85(5)$ | $1.89(4)$ | $2.729(6)$ | $170(7)$ |
| O6-H6A $^{\mathrm{H}} \mathrm{O}^{\mathrm{iv}}$ | 0.85 (4) | 2.27 (4) | 3.054 (7) | 153 (6) |

Symmetry codes: (iii) $x+1, y, z$; (iv) $-x+1,-y+1,-z$.
The C -bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The O-bound H atoms were located in difference Fourier maps and refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $0.05 \AA^{2}$. The deepest peak in the final difference Fourier map was $0.93 \AA$ from atom C3.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

## metal-organic papers

The authors thank the National Natural Science Foundation of China (No. 50073019).

## References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Li, X.-H. \& Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Soudi, A. A., Marandi, F., Morsali, A. \& Zhu, L.-G. (2005). Inorg. Chem. Соттип. 8, 773-776.
Zhang, L.-P., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. E61, m860-m862.

